YEAR 12 MATHEMATICS SPECIALIST
SEMESTER TWO 2019
TEST 5: Differentiation and Differential Equations

By daring & by doing

Name: MMIJ‘

Friday 30" August 2019

Time: 55 minutes Total marks: —+—=—
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Calculator free section — maximum 25 minutes

é
1. [S marks]

An electrical device, subject to a constant voltage of 24 Volts, has a resistance R that is
decreasing at a rate of 0.1 Ohm per second.

(An Ohm is the standard unit of electrical resistance.)
The voltage V, current / (in Ampere) and resistance R follow Ohm’s Law: V' =Ix R

Describe (quantitatively) how the current is changing when the resistance is 4.0 Ohm.
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2. [9 marks —2, 4 and 3]

(a) A particle is travelling in a straight line with velocity v related to displacement x by
the equation: v=2+/x—1. Show that acceleration « is a constant
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(b) For v=2+/x-1, determine x as a function of time ¢, if x( =0) =5
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(c) If acceleration a =cosx, find v in terms of x when v(x = —] = and v=0.
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3. [5 marks—4 and 1]

A population of bacteria, P at time 7, is growing at a rate modelled by:
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(a) Show, by differentiation (and substitution), that P = L Ca satisfies this
+Ce
differential equation, for any value of the constant C.
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(b) Calculate C if P(r=0)=10
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Year 12 Specialist Test S: Derivatives and Differential Equations

Name:
Time: 35 minutes 30 marks
Calculator assumed section
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4. [7 marks — 2, 2 and ’Z] 5 O s Y O O
The curve defined by y* = x*(6—x),
as shown, is another right strophoid. .\ o1
(a) Derive an expression for o in T
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(b) Determine the exact co-ordinates of the relative minimum and maximum points on the
closed part of the curve.
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(c) Investigate the value(s) of the slope of the curve at the origin. The graph shows that
these slopes are defined!
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[10 marks—1,2,2,2,1,1 and 1]
The individual seat bookings, B, for a school production are increasing at a rate

modelled by

9B _ kB(3800- B)
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(a) What is the maximum number who might attend this production?
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At the instant when 80 bookings had been made, bookings were increasing at a rate of
50 per day.

(b) Show clearly that & = _1
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(c) What is the maximum rate of increase of bookings?
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After three days, 256 seats had been booked.

(d) Write an equation to represent the number of bookings as a function of 7.
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Question 5 (continued)

Determine the:

(e) initial number of bookings
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(f) number of bookings made in the first 8 days
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(g) day on which bookings close because only 100 seats remain unsold.
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6. [4 marks]

14m

A water trough 10 m long has a trapezoidal cross-
section as shown.

It is being filled at a rate of 60 litres per minute.

When the water is # m deep, the volume V (in m?)

2
is given by V = 10(»’1 +-Z—J

How fast is the water level rising:
(a) initially (when A=0)

(b) when 2A=0.3 m
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7. [9marks—1,2, 1,2 and 3]

Slope or gradient fields enable us to analyse differential equations that are difficult to
solve.

#% Edit Zoom Analysis

- BNSENRNUE

Consider e =x-y , as shown.
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(a) Describe the locus of points with a horizontal
gradient.
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(b) Sketch the solution to o ol that passes N AL L ] !
= AN .
through (-3,1)  / :

(c) Sketch the solution to % = x—y that passes through (3,-1)
B
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(d) Describe and generalise the differences between these solutions in (b) and (c)
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(e) Use Euler’s method, with x =0.1 to estimate y(x =2.4) for the solution that
passes through the point (2,2)
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